

High speed SNSPD with four interleaved nanowires

Single Quantum B.V Rotterdamseweg 394 | 2629 HH Delft | The Netherlands

antonio@singlequantum.com sales@singlequantum.com

For applications that require high-speed or photon-number resolution multipixel superconducting nanowire single-photon detectors (SNSPDs) in the telecom range are very attractive.

Single Quantum has developed a type of multipixel detector that allows for very fast detection. This four-pixelated device demonstrates full efficiency recovery after 6.5 ns and 3dB efficiency-point above one billion counts per second with an outstanding timing detection accuracy, just above 10 ps.

Interleaved design

Short pixels, low kinetic inductance,

High Count Rate Characterization

Device tested under CW

Figure 1: SEM image of a 4 interleaved nanowire SNSPDs. Blue is the outer wire and yellow is inner one.

- high speed, low dead time
- Homogenous count rate on all pixels
- All pixels have same critical current
- Each pixel is controlled independently
- Very large dynamic range: 1 GHz count rate @ 1550 nm
- Excellent jitter: 13.0 ps FWHM

SNSPD Pulse Efficiency Recovery

- After 5 ns the height of the pulse is reduced by 1/e.
- Each pixel can detect a new photon even before this time frame, although the current is not fully restored.
- Efficiency Recovery Histogram The (likelihood of detection events vs time) shows at least 50% chance of detecting an incoming photon after 5 ns

- illumination @ 1550 nm
- Total flux varied from 10⁶ to over a 10⁹ photons per second.
- Detection efficiency drops by 10% at 10⁸ and by 50% at 10⁹ photon flux. Here, the dead time impacts the efficiency

Figure 3: HCR measurement with CW illumination. The arrow highlights the 3 dB point where the detection efficiency drops by 50%

Timing accuracy

jitter measured with a pulsed laser and cryogenic amplification.

Beside being fast, such device shows an outstanding timing

• after 7 ns the chance is 100% (system efficiency fully restored).

Why 4 pixels?

SDE 70 %	4-Pixels	8-Pixels	16-Pixels
1 photon	70 %	70 %	70 %
2 photons	37 %	43 %	46 %
3 photons	13 %	23 %	28 %
4 photons	2 %	10 %	16 %
5 photons		3 %	8 %
6 photons		1 %	4 %
7 photons		0 %	2 %
8 photons		0 %	1 %

Figure 2: (Top) SNSPD pulse taken with a 4 GHz Bandwidth oscilloscope. (Bottom) Efficiency Recovery Histogram, cursors are placed at 50% and 100% detection likelihood. The histogram was acquired under CW illumination with a flux of 1 billion counts per second.

- Good balance between system complexity and performance
- Up to six 4-pixels detectors in lacksquareone single cryostat (price benefit/upgradable)
- More than 4-pixels don't offer a competitive advantage in the detection of 2 photon events

Time (ps) Figure 4: Timing jitter of one single pixel

PNR performance Interleaved SNSPDs

- PNR of the 4-pixel SNSPD shown by combining the signal outputs. lacksquare
- Persistence map recorded with an oscilloscope shows 4 distinct lacksquarepulse heights during pulsed illumination
- The Histogram estimates the *coincidence probability* of detecting simultaneous photons.

Figure 5: Persistence map. Mean photon number per pulse is 2.

Applications

Quantum optics

- Photon correlation with one detector
- Faster measurements
- Photon-number resolution

Bio-Imaging

- High dynamic range
- Long penetration depth
- Outstanding Signal-to-Background ratio

QKD

- Attack detection
- Fast key generation
- Photon number resolution

[1] F. Xia, et. al. "Short-Wave Infrared Confocal Fluorescence Imaging of Deep Mouse Brain with a Superconducting Nanowire Single Photon Detector". ACS Photonics 2021, 8, 9, 2800–2810 (2021). [2] Han-Sen Zhong et al. "Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light". Phys. Rev. Lett. 127, 180502 – (2021)